Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 118: 408-422, 2024 May.
Article in English | MEDLINE | ID: mdl-38461956

ABSTRACT

Western diet (WD) consumption during early life developmental periods is associated with impaired memory function, particularly for hippocampus (HPC)-dependent processes. We developed an early life WD rodent model associated with long-lasting HPC dysfunction to investigate the neurobiological mechanisms mediating these effects. Rats received either a cafeteria-style WD (ad libitum access to various high-fat/high-sugar foods; CAF) or standard healthy chow (CTL) during the juvenile and adolescent stages (postnatal days 26-56). Behavioral and metabolic assessments were performed both before and after a healthy diet intervention period beginning at early adulthood. Results revealed HPC-dependent contextual episodic memory impairments in CAF rats that persisted despite the healthy diet intervention. Given that dysregulated HPC acetylcholine (ACh) signaling is associated with memory impairments in humans and animal models, we examined protein markers of ACh tone in the dorsal HPC (HPCd) in CAF and CTL rats. Results revealed significantly lower protein levels of vesicular ACh transporter in the HPCd of CAF vs. CTL rats, indicating chronically reduced ACh tone. Using intensity-based ACh sensing fluorescent reporter (iAChSnFr) in vivo fiber photometry targeting the HPCd, we next revealed that ACh release during object-contextual novelty recognition was highly predictive of memory performance and was disrupted in CAF vs. CTL rats. Neuropharmacological results showed that alpha 7 nicotinic ACh receptor agonist infusion in the HPCd during training rescued memory deficits in CAF rats. Overall, these findings reveal a functional connection linking early life WD intake with long-lasting dysregulation of HPC ACh signaling, thereby identifying an underlying mechanism for WD-associated memory impairments.


Subject(s)
Acetylcholine , Diet, Western , Humans , Rats , Animals , Adolescent , Adult , Acetylcholine/metabolism , Memory/physiology , Hippocampus/metabolism , Signal Transduction , Memory Disorders/metabolism
2.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873229

ABSTRACT

The ability to encode and retrieve meal-related information is critical to efficiently guide energy acquisition and consumption, yet the underlying neural processes remain elusive. Here we reveal that ventral hippocampus (HPCv) neuronal activity dynamically elevates during meal consumption and this response is highly predictive of subsequent performance in a foraging-related spatial memory task. Targeted recombination-mediated ablation of HPCv meal-responsive neurons impairs foraging-related spatial memory without influencing food motivation, anxiety-like behavior, or escape-mediated spatial memory. These HPCv meal-responsive neurons project to the lateral hypothalamic area (LHA) and single-nucleus RNA sequencing and in situ hybridization analyses indicate they are enriched in serotonin 2a receptors (5HT2aR). Either chemogenetic silencing of HPCv-to-LHA projections or intra-HPCv 5HT2aR antagonist yielded foraging-related spatial memory deficits, as well as alterations in caloric intake and the temporal sequence of spontaneous meal consumption. Collective results identify a population of HPCv neurons that dynamically respond to eating to encode meal-related memories.

3.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546790

ABSTRACT

Western diet (WD) consumption during development yields long-lasting memory impairments, yet the underlying neurobiological mechanisms remain elusive. Here we developed an early life WD rodent model to evaluate whether dysregulated hippocampus (HPC) acetylcholine (ACh) signaling, a pathology associated with memory impairment in human dementia, is causally-related to WD-induced cognitive impairment. Rats received a cafeteria-style WD (access to various high-fat/high-sugar foods; CAF) or healthy chow (CTL) during the juvenile and adolescent periods (postnatal days 26-56). Behavioral, metabolic, and microbiome assessments were performed both before and after a 30-day healthy diet intervention beginning at early adulthood. Results revealed CAF-induced HPC-dependent contextual episodic memory impairments that persisted despite healthy diet intervention, whereas CAF was not associated with long-term changes in body weight, body composition, glucose tolerance, anxiety-like behavior, or gut microbiome. HPC immunoblot analyses after the healthy diet intervention identified reduced levels of vesicular ACh transporter in CAF vs. CTL rats, indicative of chronically reduced HPC ACh tone. To determine whether these changes were functionally related to memory impairments, we evaluated temporal HPC ACh binding via ACh-sensing fluorescent reporter in vivo fiber photometry during memory testing, as well as whether the memory impairments could be rescued pharmacologically. Results revealed dynamic HPC ACh binding during object-contextual novelty recognition was highly predictive of memory performance and was disrupted in CAF vs. CTL rats. Further, HPC alpha-7 nicotinic receptor agonist infusion during consolidation rescued memory deficits in CAF rats. Overall, these findings identify dysregulated HPC ACh signaling as a mechanism underlying early life WD-associated memory impairments.

4.
Nat Commun ; 14(1): 1755, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36990984

ABSTRACT

The lateral hypothalamic area (LHA) integrates homeostatic processes and reward-motivated behaviors. Here we show that LHA neurons that produce melanin-concentrating hormone (MCH) are dynamically responsive to both food-directed appetitive and consummatory processes in male rats. Specifically, results reveal that MCH neuron Ca2+ activity increases in response to both discrete and contextual food-predictive cues and is correlated with food-motivated responses. MCH neuron activity also increases during eating, and this response is highly predictive of caloric consumption and declines throughout a meal, thus supporting a role for MCH neurons in the positive feedback consummatory process known as appetition. These physiological MCH neural responses are functionally relevant as chemogenetic MCH neuron activation promotes appetitive behavioral responses to food-predictive cues and increases meal size. Finally, MCH neuron activation enhances preference for a noncaloric flavor paired with intragastric glucose. Collectively, these data identify a hypothalamic neural population that orchestrates both food-motivated appetitive and intake-promoting consummatory processes.


Subject(s)
Hypothalamic Hormones , Rats , Male , Animals , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Pituitary Hormones , Melanins , Hypothalamic Area, Lateral/metabolism , Neurons/metabolism
5.
Cell Rep ; 40(13): 111402, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170832

ABSTRACT

Remembering the location of a food or water source is essential for survival. Here, we reveal that spatial memory for food location is reflected in ventral hippocampus (HPCv) neuron activity and is impaired by HPCv lesion. HPCv mediation of foraging-related memory involves communication to the lateral septum (LS), as either reversible or chronic disconnection of HPCv-to-LS signaling impairs spatial memory retention for food or water location. This neural pathway selectively encodes appetitive spatial memory, as HPCv-LS disconnection does not affect spatial memory for escape location in a negative reinforcement procedure, food intake, or social and olfactory-based appetitive learning. Neural pathway tracing and functional mapping analyses reveal that LS neurons recruited during the appetitive spatial memory procedure are primarily GABAergic neurons that project to the lateral hypothalamus. Collective results emphasize that the neural substrates controlling spatial memory are outcome specific based on reinforcer modality.


Subject(s)
Hippocampus , Spatial Memory , GABAergic Neurons , Hippocampus/metabolism , Neural Pathways/physiology , Spatial Memory/physiology , Water
6.
Nutrients ; 13(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34959774

ABSTRACT

A Western diet (WD), high in sugars and saturated fats, impairs learning and memory function and contributes to weight gain. Mitochondria in the brain provide energy for neurocognitive function and may play a role in body weight regulation. We sought to determine whether a WD alters behavior and metabolic outcomes in male and female rodents through impacting hippocampal and hypothalamic mitochondrial bioenergetics. Results revealed a sexually dimorphic macronutrient preference, where males on the WD consumed a greater percentage of calories from fat/protein and females consumed a greater percentage of calories from a sugar-sweetened beverage. Both males and females on a WD gained body fat and showed impaired glucose tolerance when compared to same-sex controls. Males on a WD demonstrated impaired hippocampal functioning and an elevated tendency toward a high membrane potential in hippocampal mitochondria. Comprehensive bioenergetics analysis of WD effects in the hypothalamus revealed a tissue-specific adaption, where males on the WD oxidized more fat, and females oxidized more fat and carbohydrates at peak energy demand compared to same-sex controls. These results suggest that adult male rats show a susceptibility toward hippocampal dysfunction on a WD, and that hypothalamic mitochondrial bioenergetics are altered by WD in a sex-specific manner.


Subject(s)
Cognition/physiology , Diet, Western/adverse effects , Energy Metabolism/physiology , Sex Characteristics , Adipose Tissue/metabolism , Animals , Female , Glucose Intolerance/etiology , Hippocampus/metabolism , Hypothalamus/metabolism , Male , Mitochondria/metabolism , Rats , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...